

Saft stationary batteries, solutions you can count on!

1xSYS_00001 95xUP1L1500

Table of contents	Page
Stationary Ni-Cd battery sizing	2
IEC 62485-2 / EN 50272-2 ventilation requirement / heat dissipation	5
UP1L 1500 - Cell data sheet	9

Stationary Ni-Cd battery sizing

project name project reference System name System reference Customer Customer reference New Project 1 P_30Mar21_Brooks_a SYS_00001 - IEEE/UPS SYS_00001

Battery proposal

Proposed battery	1 x 95 x UP1L 1500		
Electrical data	Rated capacity	1500 Ah	
	Fast charge voltage	137.75 V (1.45 V/cell)	
	Floating charge voltage	134.9 V (1.42 V/cell)	
	Final voltage/cell	1.105 V	
	Short-circuit current	8,403 A	
	Topping-up interval	20.0 years	
Physical data	Battery weight	13,152.8 lb	

Technical specifications

Sizing method	IEEE	I	
Voltage window	Minimum system voltage Maximum system voltage	105.00 V 137.75 V	
Charge method	Dual rate		
Load profile	Number	Current	Time (hh:mm:ss)
	1	204 A	04:15:00
Options	Nominal temperature	77 °F	
	Minimum temperature	77 °F	
	Maximum temperature	77 °F	
	State of charge	100%	
	Design margin	1.1	
	Aging factor	1.25	

SAFT confidential and proprietary. The data herein given are for information purposes only and are not binding on SAFT. They may be modified without prior notice. Please contact a SAFT representative in order to obtain confirmation of the above data.
Page 2/11
Visit our unbails of upun activation com

Visit our website at www.saftbatteries.com

Stationary Ni-Cd battery sizing

Load profile

Amperes

SAFT confidential and proprietary. The data herein given are for information purposes only and are not binding on SAFT. They may be modified without prior notice. Please contact a SAFT representative in order to obtain confirmation of the above data.
Page 3/11
Visit our website at www.saftbatteries.com

(378843) Version: 2.12, Last updated on 01/2021

Stationary Ni-Cd battery sizing

Battery calculation worksheet IEEE 1115-2014

Range	UP1L
No. of cells	95
Final voltage/cell	1.105 V
Nominal temperature	77 °F
Minimum temperature	77 °F
Maximum temperature	77 °F

(1) Period	(2) Load (Amperes)	(3) Changes in Load (Amperes)	(4) Duration of Period (minutes)	(5) End of Section (minutes)	(6) Kt Factor *	(7) Temp Derating Factor **	(8) Required Section Size (3)x(6)x(7) =Rated Ah
Section 1	- First 1 Perio	ds Only - If A	2>A1, go to Se	ection 2-No			
1	A1=204.00	A1-0= 204.00	M1=255.00	t=M1=255.00	5.0222	1.0000	1,024.53
Total							1,024.53

(*) In this calculation, constant potential charging effects are included in our Kt factors (**) The factors is interpolated when needed and rounded down to 4 decimals in the calculation

Maximum Section size 1,024.53 + Random size 0.00 = Uncorrected Size 1,024.53. Uncorrected Size 1,024.53 x Design margin 1.1 x Aging factor 1.25 / State of charge 100% = 1,408.73. When the cell size is greater than a standard cell size, the next larger cell is required. The Required cell size is 1,408.73 Amperes-hours. Therefore cell UP1L 1500 is required.

The Kt factor is a way to present the performance of a cell.

Kt=Nominal capacity (Ah)/Performance (A)

It is valid for a specific cell type, discharge time and final voltage.

Temperature compensated charge voltage

Recommended. The value to apply for ambient temperatures >+20°C is -2 mV/°C (-1.1 mV/°F) starting from +20°C (+68°F). For other conditions see Technical Manual.

Storage

The battery must be stored in a dry indoor location, on open, well ventilated shelves away from direct sunlight between 0°C and +30°C (+32°F and 86°F).

The batteries are supplied filled with electrolyte and charged. They can be stored in this condition for maximum 24 months from date of shipment in accordance with the recommendations set forth in this I&O.

Storage of a filled battery at temperatures above +30°C (+86°F) can result in permanent change and loss of product performance, depending on the duration of the storage above the maximum recommended temperature. Never drain the electrolyte from the cells. To ensure maximum protection of the cells always store the product in its original packaging.

SAFT confidential and proprietary. The data herein given are for information purposes only and are not binding on SAFT. They may be modified without prior notice. Please contact a SAFT representative in order to obtain confirmation of the above data. Page 4/11

Visit our website at www.saftbatteries.com

Battery

95 x UP1L 1500

During the last stage of high-rate charging (end of charge and during overcharge), the battery is emitting gases (oxygen-hydrogen mixture). The purpose of ventilating a battery location or enclosure is to maintain the hydrogen gas concentration below the 4% hydrogen threshold. Battery accommodation rooms are to be considered as safe from explosions, when by the natural or forced ventilation the concentration of hydrogen gas is kept below this safety limit. Note that specific local regulations for battery installation and ventilation may be valid in your area.

Hydrogen gas (H2) Concentration	4%	standard	IEC 62485-2 / EN 50272-2
LEL Value	100%		

Ventilation air flow Q

 $Q = v x q x s x n x I_{gas} x C_{rt} x 10^{-3} (m^{3}/h)$

Variable	Description	Value
v x q x s	v = dilution factor to avoid a 4% hydrogen concentration ((100 % - 4%) / 4%)	24
	q = maximum generated hydrogen for 1 Ah of overcharge per cell assuming no gas recombination	0.42 x 10⁻³ m³/Ah
	s = general safety factor	5
n	Number of cells	95
$I_{gas} = I_{float/Boost} \times f_g \times f_s$	Current producing gas during overcharge when charged with constant voltage	
	If loat = current for the float charge under fully charged condition at 1.42 V to 1.43 V at + 20 °C	2 mA/Ah
	I_{Boost} = current for the boost charge under fully charged condition at 1.43 V to 1.45 V at + 20 $^\circ\text{C}$	5 mA/Ah
	f_g = gas emission factor, proportion of current at fully charged state producing hydrogen	0.2
	f_s = safety factor taking into account faulty cells and an ageing	5
Igas = Icommissioning	Current for commissioning at constant current charge at 0,2 C5 A	200 mA/Ah
Crt	Rated capacity	1500 C5 Ah

	At float	At boost	Commissioning
Air flow Q (m³/h)	14.36	35.91	1436.40

Note: The charger must be protected against malfunction. If not, the ventilation should be calculated to suit the greatest current available from the charger.

SAFT confidential and proprietary. The data herein given are for information purposes only and are not binding on SAFT. They may be modified without prior notice. Please contact a SAFT representative in order to obtain confirmation of the above data. Visit our website at www.saftbatteries.com

Battery

95 x UP1L 1500

Number of air changes per hour

	Length (m)	Width (m)	Height (m)	Volume (m ³)
Battery room volume				
Occupied volume				3.6
Free air volume				

	At float	At boost	Commissioning
Number of air changes per hour	-	N/A	

Natural ventilation

The amount of ventilation air flow shall preferably be ensured by natural ventilation, otherwise by forced ventilation. For natural ventilation, battery rooms or enclosures require an air inlet and an air outlet with a free area of opening calculated by the formula $A > 28 \times Q$ (cm²). The air velocity is assumed to be 0.1 m/sec.

	At float	At boost	Commissioning
Free area of openings - inlet & outlet (cm ²)	14.36*28=402.2	35.91*28=1005.5	1436.40*28=40219. 2

The above calculations are done according to the IEC 62485-2 standard. Always check local regulations.

Battery

95 x UP1L 1500

H2 emissions

The calculated H2 emission value is the amount of H2 that will be released from the cells under normal charging conditions without safety factors.

H2 Emission = 0.42 x 0.001 x Crt x lhydrogen x n dm³/h (litre/h)

Variable	Description	Value
Ihydrogen = Ifloat/BoostX(1-Rv)	Current producing gas during overcharge when charged with constant voltage	
	I_{float} = current for the float charge under fully charged condition at 1.42 V to 1.43 V at + 20 °C	2 mA/Ah
	I_{Boost} = current for the boost charge under fully charged condition at 1.43 V to 1.45 V at + 20 °C	5 mA/Ah
	R_v = recombination degree, proportion of hydrogen that is recombined into water	0.95
Ihydrogen = Icommissioning	Current for commissioning at constant current charge at 0,2 C5 A	200 mA/Ah
n	Number of cells	95
Crt	Rated capacity	1500 C₅ Ah

	At float	At boost	Commissioning
H2 Emission (dm ³ /h)	5.99	15.0	11970
H2+O2 Emission (dm ³ /h)	8.98	22.4	17955

Heat dissipation

The heat dissipation during float is normally used for dimensioning the cooling system. The cells will also generate heat during discharge and recharge but the generated heat will be absorbed by the plates and the electrolyte and will slowly dissipate to the surrounding air.

	At float 1.42V Per cell	At boost 1.45V Per cell	At discharge av.current of 204A av.voltage of 1.15V Per cell
Heat dissipation per system (W)	384.5	988.6	N/A

SAFT confidential and proprietary. The data herein given are for information purposes only and are not binding on SAFT. They may be modified without prior notice. Please contact a SAFT representative in order to obtain confirmation of the above data. Visit our website at www.saftbatteries.com

Battery

95 x UP1L 1500

Safety distance according to IEC 62485-2 chaper 7.7

d = 28 ,8 × $\sqrt[3]{I_{gas}}$ × $\sqrt[3]{C_{rt}}$ mm

Variable	Description	Value
lgas = lfloat/Boost X fg X fs	Current producing gas during overcharge when charged with constant voltage	
	If loat = current for the float charge under fully charged condition at 1.42 V to 1.43 V at + 20 °C	2 mA/Ah
	I_{Boost} = current for the boost charge under fully charged condition at 1.43 V to 1.45 V at + 20 °C	5 mA/Ah
	f_g = gas emission factor, proportion of current at fully charged state producing hydrogen	0.2
	f_s = safety factor taking into account faulty cells and an ageing	5
Crt	Rated capacity	1500 C5 Ah

	At float	At boost
Safety distance (mm)	415	563

NOTE The required safety distance d can be achieved by the use of a partition wall between battery and sparking device.

UP1L 1500 - Cell data sheet

Classification

		Wi	iring prin	ciple Crosswise
Brand	Saft		⊕ _ ¶ _ ¶	
Cell type	UP1L 1500 🥒		⊕ ⊷ ••••••••••••••••••••••••••••••••••••	
Cell P/N	310560071		⊕ −	
Capacity at 5 hours rate	1,500 Ah		⊕ 	
IEC Designation	KGL1500P		0	
According to IEC 62259				
Physical data				
Overall height	16.18 In			
	7.00 სა	M/sisht series II		100 5 16
vviath	7.68 IN	vveight per cell		138.5 ID
Length	18.62 IN	Block length - 2 cells		-
Block length - 3 cells	-	Block length - 4 cells		-
Block length - 5 cells	-	Block length - 6 cells		-
Block length - 7 cells	-	Block length - 8 cells		-
Block length - 9 cells	-	Block length - 10 cells		-
Construction				
Container material	Polypropylene	No. of terminals/polarity	/	6
Separator type	Felt	Terminal material		Steel
Connection torque	265 5 +/- 26 6 l bf in	Vent type		Low pressure flame
Terminal size	M10 SW 0 630 In	Vontypo		arresting vent (large)
		Handle		Yes
Plates				
Positive		Negative		
Type of plates	Maintenance Free Pocket	Type of plates		Maintenance Free Pocket
Electrolyte				
Flectrolyte type: Renewal	F13	Max/Min		1 97 In
Electrolyte type: Initial	E 70	Vent oil quantity		1.07 m
Electrolyte type: Initial	15.6 liters	Vent on quantity		
	13.0 mers			
Connection				
Cable area of internal connection cables	6.50 sq.ft.	End-lug (and external c	cable)	4.65 sq.ft.

SAFT confidential and proprietary. The data herein given are for information purposes only and are not binding on SAFT. They may be modified without prior notice. Please contact a SAFT representative in order to obtain confirmation of the above data. Visit our website at www.saftbatteries.com

(378843) Version: 2.12, Last updated on 01/2021

UP1L 1500 - Cell data sheet

Charging				
Float voltage Single-level voltage	1.42 V/Cell 1.42 V/Cell	High rate voltage (min)	1.45 V/Cell	
Resistance/Short c	ircuit			
Internal resistance	0.16 mOhm	Short circuit current	8403 A	
Performance data			7	

Current discharge

After prolonged float charge of fully charged cells. Available amperes at +20°C +/- 5°C (+68°F +/- 9°F)

V/Cell	10h	8h	5h	3h	2h	1.5h	1h	30m	20m	15m	10m	5m	1m	30s	5s	1s
1	156	193	300	483	629	720	846	1,029	1,120	1,188	1,251	1,379	1,380	1,511	1,783	1,954
1.05	154	190	296	438	548	620	707	842	917	945	998	1,095	1,158	1,257	1,492	1,630
1.1	150	185	275	378	457	503	566	675	728	762	800	862	950	1,037	1,231	1,328
1.14	142	170	234	295	352	390	436	510	554	592	637	721	748	830	985	1,048

Power discharge

Available power (W), after prolonged float charged of fully charged cells at +20°C +/- 5°C (+68°F +/- 9°F)

V/Cell	10h	8h	5h	3h	2h	1.5h	1h	30m	20m	15m	10m	5m	1m	30s	5s	1s
1	181	221	335	517	657	745	865	1,039	1,127	1,193	1,254	1,379	1,380	1,511	1,783	1,954
1.05	180	219	337	482	593	666	754	891	967	995	1,049	1,150	1,216	1,319	1,567	1,711
1.1	175	215	317	428	513	561	629	745	803	839	881	948	1,045	1,141	1,354	1,460
1.14	167	199	273	341	406	448	500	583	632	675	727	822	852	946	1,122	1,195

UP1L 1500 - Cell data sheet

Kt Factor

Current discharge

After prolonged float charge of fully charged cells. Kt factor at +20°C +/- 5°C (+68°F +/- 9°F)

V/Cell	10h	8h	5h	3h	2h	1.5h	1h	30m	20m	15m	10m	5m	1m	30s	5s	1s
1	9.6	7.76	5.00	3.11	2.39	2.08	1.77	1.46	1.34	1.26	1.20	1.09	1.09	0.99	0.84	0.77
1.05	9.7	7.89	5.06	3.43	2.74	2.42	2.12	1.78	1.64	1.59	1.50	1.37	1.29	1.19	1.01	0.92
1.1	10.0	8.12	5.45	3.97	3.28	2.98	2.65	2.22	2.06	1.97	1.87	1.74	1.58	1.45	1.22	1.13
1.14	10.5	8.84	6.41	5.08	4.26	3.85	3.44	2.94	2.71	2.53	2.35	2.08	2.01	1.81	1.52	1.43

Power discharge

Kt factor power, after prolonged float charged of fully charged cells at +20°C +/- 5°C (+68°F +/- 9°F)

V/Cell	10h	8h	5h	3h	2h	1.5h	1h	30m	20m	15m	10m	5m	1m	30s	5s	1s
1	8.30	6.79	4.47	2.90	2.28	2.01	1.73	1.44	1.33	1.26	1.20	1.09	1.09	0.99	0.84	0.77
1.05	8.35	6.84	4.45	3.11	2.53	2.25	1.99	1.68	1.55	1.51	1.43	1.30	1.23	1.14	0.96	0.88
1.1	8.55	6.98	4.72	3.50	2.93	2.67	2.39	2.01	1.87	1.79	1.70	1.58	1.44	1.32	1.11	1.03
1.14	8.97	7.55	5.49	4.40	3.70	3.35	3.00	2.57	2.37	2.22	2.06	1.83	1.76	1.59	1.34	1.26